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Synopsis 
The effects of a filler in an elastomer can be described by means of a theory based on a 

simple model in which the filler particles are assumed to be of uniform size, of cubic 
shape, and dispersed in such a manner as to occupy the points of a cubic space lattice. 
For the case of shear deformation, simple relations can be derived for the increase in the 
storage modulus G' and the loss modulus, G" of the bulk material with an increase in 
filler content. Furthermore, the theory predicts the temperature shift of two points 
which can be easily determined experimentally: the inflection point of G' and the max- 
imum of G". 

Introduction 

They are 
more or less completely dispersed in these materials, e.g., as pigments in 
plastics or in paint films. In  most cases, the filler particles are inorganic 
and crystalline in nature, having mean dimensions of about 0.1-1 p. Since 
the particle size distribution is ordinarily made as narrow as possible, the 
filler can be considered to consist of particles of approximately uniform size. 

Comparatively little is known about the strength of the bond between 
filler particle and the surrounding viscoelastic material. Although even a 
chemical bond is conceivable, van der Waals forces are prevailing in most 
cases, so that the strength of the bond is probably rather poor. One can 
therefore expect that upon deformation of the bulk material the segments 
of the macromolecules slide more or less easily along a sufficiently smooth 
surface of a filler particle. This will obviously not be true if portions of 
the macromolecules are somehow trapped in crevices or other unevennesses 
of the filler surface. In practice, both cases should be taken into account 
unless further details on the bonding conditions are known. 

It has often been observed experimentally that the addition of a filler 
affects the mechanical properties of the bulk elastomer. In the past, theo- 
retical studies on these effects have also been carried out, and have been 
found for the most part to agree with experimental results. Recent cal- 
culations by van der Poel,' based on a former approach of Frohlich and 
Sack2 and earlier ones of Bruggeman13 have been used to explain the be- 
havior of filled rubber materials, as measured by Schwarzl et al.' Another 
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Various kinds of fillers are frequently used in elastomers. 
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theoretical treatment of the problem was offered by GuthJ5 who started 
from Einstein's classical calculation on the rheological effects of small solid 
spheres in liquids. Lastly, a calculation by Radok and Tail6 who make 
allowance for the bond in the interface between filler particle and viscoelastic 
environment, must be mentioned. 

Although most of these theoretical investigations are highly rigorous, 
their approach is nevertheless rather lengthy and does not lead to results 
which can be expressed in convenient form. Moreover, the ideas for the 
models providing the basis for calculation are by no means as evident as 
might be expected at a first glance. Although these disadvantages do not 
in principle diminish the value of the theories mentioned, a simpler ap- 
proach which facilitates the understanding of the change in the behavior of 
the material due to the filler might prove useful. The purpose of this 
paper is to give such an approach; however it must be mentioned from the 
start that its simplicity necessitates some essential restrictions and idealiza- 
tions. In the present form the theory proposed below applies to deforma- 
tion in shear only. However, this is the type of deformation produced, 
for instance, in the torsion pendulum, which finds frequent application in 
testing of viscoelastic materials and would provide a good means of com- 
paring theory with experiment here. 

Behavior of the Pure Elastomer 

First, some preliminary remarks concerning the behavior of the pure 
efastomer in which the filler is to be imbedded are in order. A crosslinked 
viscoelastic material can be represented by a three-parameter model.' It 
consists of a spring of shear modulus GI connected in series with a Voigt 
model, i.e., a spring Gz in parallel with a dashpot 7. Both G1 and GZ are 
virtually independent of temperature. The viscosity component q is as- 
sumed to obey the Andrade equation for its dependence on temperature 
T: 

q = ~oexp(E /RT)  (1) 

where 70 is a constant, R the gas constant, and E the activation energy for 
the softening process, manifested by higher molecule mobility with in- 
creasing temperature. The assumption GI>> GZ can be generally justified. 
Hence, if the pure elastomer is subjected to an alternating force of angular 
frequency W, its shear modulus is expressed in terms of the elements of the 
three-parameter model as a complex value GO = GO' +  GO", where the 
storage modulus GO' is 

Go' = (GlZGz + Gidq2)/(Gi2 + ~ ~ q ~ )  (2) 

and the loss modulus GO" 
GO" = wv Gi/(Gi2 + w2qZ) (3) 

Subsequently, both GO' and GO" are temperature-dependent through q ,  as 
indicated by eq. (1). It is seen from eq. (2) that at  high temperature 
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(q << GI) the storage modulus approaches Gz, characteristic of the en- 
tropy-elastic state of the material, and at  low temperature (wq >> GI), it 
approaches GI, characteristic of the energy-elastic state. In  both cases, 
the loss modulus GO" vanishes. 

Two features of the model will be mentioned here in view of experi- 
mental verification, to be dealt with below: ( I )  the loss modulus assumes 
a maximum for wq = GI, in which case both GO' and GO" have the same 
value, GJ2; (2) the storage modulus has an inflection point for wq = GI/ 
4 3 ,  for which Go' and Go" become G1/4 and 4 3  G1/4, respectively. 

In the following analysis the angular frequency is to be considered as 
constant. It is determined by the experimental arrangement, for example, 
the torsion pendulum mentioned. 

Model of the Filled Material 

It is assumed that the filler consists of particles which have the shape of 
small cubes, all of the same size. Although in reality the particles are 
randomly dispersed throughout the bulk material, they will be considered 
as located on sites equidistant from one another, as is the case when they 
occupy the points of a cubic space lattice. Furthermore, the edges of the 
particle cubes will all be considered parallel to the three main axes of the 
lattice. The bulk material therefore consists of identical cubic elementary 
cells, to each of which a particle cube is assigned. The particle cube may 
rest in any of the corners of the cell. It does not matter which corner is 
selected for that purpose, but it must be the same corner in all elementary 
cells. Finally, the forces acting upon the bulk material may be such as 
to produce a shear deformation of the elementary cell, as depicted sche- 
matically in Figure 1. The cell is divided in different regions, of which 
regions 1, 2, and 3 are pure elastomer (modulus Go), while region 4 repre- 
sents the filler cube (shear modulus GF).  

The various regions (i = 1,2,3,4) experience deformations of different 
magnitude under the influence of the forces Fi, which act in the directions 

L3 

Fig. 1. Diagrammatic representation of the elementary cell of the filled elastomer in the 
deformed state: (regions 1, 2, 3) pure elast,omer; (region 4) filler cube. 
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indicated in Fig. 1. 
between forces and deformations: 

The following four equations determine the relations 

Moreover, because of continuity, F3 = FZ + F4. The total displacement 
6 of the top face of the cell and the total force F acting upon that face and 
producing the deformation are obviously: 

6 = 6, + 6, (5)  

(6) 

and 

F = F1 + Fz + F4 

The shear strain is then given by 6/D and the shear stress by F/D2, both 
of which are found from the last seven equations. The ratio of stress and 
strain yields the shear modulus of the elementary cell as a whole, i.e., of the 
filled material, in the form : 

G = fGo (7) 
where the factor f, which is complex since it incorporates GO, takes account 
of the reinforcement of the bulk material by the filler addition. It is also a 
function of GF and of the geometrical dimensions of the cell. The ratio of 
the length of filler cube edge to that of the elementary cell is denoted by 
x = d / D .  Thus the factor f turns out to be: 

f = 1 + x3/[X - x2 -k (Go/GF)] (8) 

where the approximation [G0l/GF << 1 has been used. It is the quantity 
x which introduces the effect of the filler content; its relation to the filler 
volume concentration p is simply x = 4’;. 

Since each elementary cell is sheared in exactly the same way, no voids 
are generated in the bulk material in the course of the deformation process. 
Although such an idealized deformation is conceivable-at least in prin- 
ciple-it is nevertheless rather artificial. It involves an unhampered 
sliding of the elastomer portions of region 1 past the other regions 2 and 3 
along their common interface as well as along those faces of the filler cube 
in contact with region 1. On the other hand, sufficient adhesion is as- 
sumed to exist between the surfaces of the filler cube adjacent to elastomer 
regions 2 and 3 to prevent such sliding; for it would otherwise hardly be 
conceivable how the deformation of the filler cube could be brought about 
at  all. The relative simplicity of. the form of the reinforcement factor f 
outweighs the shortcomings of this idealized model. Two features of the 
reinforcing effect are worth mentioning. ( I )  The effect depends only 
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upon filler volume concentration (through 2). Obviously the absolute 
dimensions of the filler particle do not play an essential part, as d does not 
explicitly enter the expression for f. (2) Whenever t,he element.ary cell is 
sheared, the filler cube blocks a certain amount of the deformation of the 
elastomer (represented by region 2) ,  to the same extent as the cube itself 
is deformed. The counterpart to this blocking effect appears as a stronger 
deformation of other elastomer portions of the elementary cell (repre- 
sented by region 3). It is evident that this simple picture will fail for too 
small or too large a filler cube, for in either case the region 2 loses its shape 
as a parallelepiped with edges of equal order of magnitude. This assump- 
tion on the form of that region seems to provide the only reasonable basis 
for the concept of the blocking effect. Consequently, the model is cer- 
tainly not applicable for, say, d < 0 . 2 0  and d > OBD, i.e., not for filler 
volume concentrations below 0.8yo, corresponding to practically unfilled 
material, and above 5oyo1 the latter being the more important restriction. 

Consequences of the Model 

The complex reinforcement factor f can be separated into its real and 

(9) 

imaginary parts: 

Rev)  = A(x)  = 1 + [x2/(1 - 2)] 

Im(f) = -(Go"/G,)B(x) = -(Go"/GF) [z/(l - 22 + z2)] (10) 

where all those summands containing the ratios (Go'/GF) and (Go"/GF) 
and their higher powers have been neglected. In  most cases, these ex- 
pressions are used in further calculations in order to avoid an undue com- 
plication. The parts of the shear modulus of the filled material are in con- 
junction with eq. (7) : 

G' = GO' Rev)  - Go"1mv) (11) 

For the purpose of experimental verification some modifications are useful. 
The reinforcing effect on the storage modulus G' can best be observed in 
either the entropy-elastic or energy-elastic region, where GO" vanishes. 
In  these regions, eq. (1 1) simplifies to : 

G' = A(%)Go' 

Here, the factor A(x )  makes allowance for only the influence of the con- 
centration of the filler but not for the filler modulus. This latter quantity 
entered the original eq. (8)  for f in the form of the ratio Go/GF. In  the 
entropy-elastic region, where GO' = G2 and GO" = 0, this ratio becomes 
Q/GF, which is so small that it can always be neglected. The reinforce- 
ment factor f then simplifies directly to A(%) in eq. (9); as a result, this 
equation should indeed be applicable in the entropy-elastic state. 

On the other hand, in the energy-elastic region one finds that the ratio 
Go/GF becomes approximately G1/G,. The quantity GI is smaller than 
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GF by only, say, one order of magnitude. 
factor f, which is real (for once again GO” = 0 ) ,  and which is equal to: 

Thus, one must retain it in the 

Al(z) = 1 -k x3/[z - 2’ + ( G ~ / G F ) ]  (14) 
This expression replaces A(s)  in eq. (13). One should expect A1 to be a 
better approximation than A for the representation of the reinforcing effect 
in the energy-elastic state, since it now contains the modulus of the filler. 

The maximum of the loss modulus can also readily be observed experi- 
mentally. Making use of the fact that GO‘ and GO” are both equal to 
Gl/2 there, one finds from eq. (12) 

(15) Gmx” = (G1/2)A(z) [1 - C ( ~ ) ( G I / G F ) ]  

where C(z) is a combination of the quantities A (2) and B(z) of eqs. (9) and 
(10) defined by C = A/2B.  

Temperature Shifts 
The filler can also cause a shift in the position of the maximum of G” 

and of the inflection point of G‘, both considered as functions of WV. Let 
oi0 represent the unshifted position; then the new, shifted position is ap- 
proximately : 

wv = W V O [ ~  - C(z)(Gl/GF)] (16) 

In deriving this expression, one retains only terms linear in (G1/GF). 
If one de- 

fines 170 = exp(E/RTo] , in accordance with eq. (l), where TO is the tem- 
perature of the maximum of GO” or of the inflection point of GO‘, respectively, 
one finds from eqs. (1) and (16) by taking logarithms on both sides: 

A shift with wv actually implies a shift with temperature T .  

(1/T) -  TO) = (R/E)-ln[l - C ( ~ ) ( G I / G F ) I  

T =  TO[^ + C ( ~ ) ( G ~ / G F ) ( R T O / E )  I 

(17) 

(18) 

Expansion of the logarithm up to the first power finally leads to: 

for the temperature where the points in consideration appear. The factor 
in brackets is greater than unity and originates from a binomial expansion 
of its reciprocal, higher powers than the first being omitted. 

It is noteworthy that the temperature shift appears as a consequence of 
the slight deformability of the filler; for if the shear modulus GF were too 
great with respect to the storage modulus G1 of the elastomer in the energy- 
elastic state, such a shift should not be observable. Evidently, the in- 
flection point exhibits not only a temperature shift but also a change in 
magnitude. It can be shown that this increase is governed by the factor 
A ( z )  of eq. (9). 

Comparison with Experimental Results 
The results of Schwarzl et aL14 who studied the effects of filling polyure- 

thane rubber with sodium chloride, may serve as an example for such a 
comparison. Although van der Poel’s theory was used by the authors to 
describe their results with sufficient accuracy, the pertinent relations in 
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Fig. 2. Increase of the stsorage modulus, expressed by (G’/G’o), vs. filler volume con- 
cent,ration p .  Theoretical curves: ( a )  function A ,  of eq. (14) with GI/GF = 0.123, (c) 
function A of eq. (Y), (e)  Gut,h’s relation; experiment,al curves: ( b )  at -7O”C., ( d )  at 
80°C. 

this theory do not appear in explicit form and their employment is there- 
fore somewhat complicated. The value of the shear modulus of pure poly- 
urethane rubber in the energy-elastic region was determined to be GI 
= 1.60 X 109N/n?. The shear modulus of sodium chloride is GF 
= 1.31 X 10l0N/nz2. In Figure 2 the functions A and A1, the latter being 
calculated with these values for G1 and GF, are shown by the solid curves a 
and c, respectively. Curve b represents the experimental results in the 
energy-elastic region at -70°C. and curve d those in the entropy-elastic 
region at 80°C. 

The agreement in the energy-elastic region is rather good, even up to 
relatively high values for the filler volume concentration p .  This indicates 
that the application of A1 in the place of A in eq. (13) was indeed necessary. 
For the function A ,  presumed primarily to represent the behavior of the 
material in the entropy-elastic region, the agreement with experiments is 
less satisfying, but it reflects the steeply ascending nature of the experi- 
mental curve, at  least qualitatively. Guth’s5 relation, occasionally used 
in the past for the description of the reinforcing effect because of its sim- 
plicity, is lastly shown as curve e in the diagram. It seems to give a some- 
what better representation of the experimental results for the higher values 
of p than does A ,  but the latter is obviously more accurate through the 
range of p 2 0.2. 

In 
order to obtain the activation energy E appearing in eq. (18), the param- 
eters of eq. (2) must be so chosen as to provide the best fit of the storage 
modulus of pure polyurethane rubber Go’, given by that equation, to the 

The temperature shift of the inflection point can also be checked. 
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experimental data. This S-shaped curve for the dependence of Go' on WT,  

in other words on T ,  can be rather exactly described with G2 = 1.30 X lo6 
N/m2, WTO = 2.82 X 10-6N/m2, and E = 15.2 kcal./mole. Substituting 
the latter in eq. (18) one finds a temperature shift of 1.9"C. for p = 0.5. 
The experimental value was 7.1"C. for the same filler concentration. 

The direction of the temperature shift is thus given correctly by the 
theory. However, in view of the various idealizations involved in the con- 
ception of the model, one can hardly expect more than an agreement in the 
order of magnitude of the effect, as indeed revealed by comparison with 
experiment. Furthermore, it must be mentioned that the Andrade equa- 
tion used in deriving the relations for the temperature shift is itself only a 
relative crude approximation. In conclusion, it can however be stated that 
several features of the effect of a filler added to an elastomer find a fairly 
good verification in the relations developed on the base of the assumed 
model, at  least in as far as the order of magnitudes and the tendencies are 
concerned. Further tests on the theory, including the study of the filler 
effects on G" and its temperature shift, are being prepared. 
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Resum6 
Les effets d'une matiere de remplissage dans des substances viscodlastiques peuvent 

&re ddcrits sur la base d'un modble simple, dont on suppose que les particules de cette 
matiere aient une grandeur uniforme, une forme cubique, e t  soient dispersees d'une 
manibre qu'elles occupent les points d'un rbseau spatial cubique. Dans le cas oil la 
matibre remplie est soumise $. une ddformation par cisaillage, des rdlations simples peu- 
vent 6tre derivbes qui indiquent pour cette matibre l'augmentation des modules de stock- 
age (G') et  de perte (G")  avec la concentration de la matiere de remplissage. De plus, 
la theorie prbdit le dbplacement de temperature de deux points qui peuvent &re deter- 
mines facilement par des essais: le point d'inflexion de G' et le maximum de G". 

Zusammenfassung 
Die Einflusse eines Fullstoffes in viskoelastischen Materialien konnen auf der Basis 

eines einfachen Modells beschrieben werden, bei dem angenommen wird, dass die Full- 
stoff-Teilchen eine einheitliche Grosse und wiirfelformige Gestalt haben und derart 
verteilt sind, dass sie die Punkte eines kubischen Raumgitters einnehmen. Fur den 
Fall, dass das gefullte Material einer Scherbeanspruchung unterworfen wird, lassen sich 
relativ einfache Beziehungen ableiten, die fur dieses Material die Erhohung des Speicher- 
Moduls (G') und des VerlusbModuls (G")  mit der Fullstoffkonzentration angeben. 
Daruber hinaus gibt die Theorie eine Voraussage uber die Temperaturverschiebung von 
zwei Punkten, die leicht experimentell bestimmt werden konnen: den Wendepunkt von 
G' und das Maximum von G". 
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